SOLUCIOES DE ECUACIONES DIFERNCIALES
Métodos de un paso.
Una de las técnicas más simples para aproximar soluciones de ecuaciones diferenciales es conocida como Método de Euler o método de las tangentes. Supongamos que queremos aproximar la solución del problema de valores iniciales y ’ = f(x, y) para el cual y(x0) = y0. Si h es un incremento positivo sobre el eje x, entonces, como se muestra en la figura, podemos encontrar un punto Q(x1, y1) = (x0 + h, y1) sobre la tangente en P (x0, yo) a la curva solución desconocida. De la ecuación de una recta que pasa por un punto dado, tenemos: 0 0 0 1 0 ( ) y x h x y y ; 0 1 0 y h y y o bien 1 0 0 y y hy en donde ( , ) 0 0 0 y f x y Si denotamos x0 + h por x1, entonces el punto Q(x1, y1) ubicado sobre la tangente es una aproximación del punto R(x1, y(x1)) que se encuentra sobre la curva solución. Esto es y1 ≈ y(x1).
6.2 Método de pasos múltiples
Se considera el problema de valores iniciales (P.V.I.) 8<: y0(x) = f(x; y(x)); x 2 [a; b]; y(a) = y0 dado, el que supondremos tiene solución única, y : [a; b] Dada una partición del intervalo [a; b]: a = x0 < x1 < < xN = b; los métodos que hemos visto hasta aquí sólo usan la información del valor yi de la solución calculada en xi para obtener yi+1. Por eso se denominan métodos de paso simple. Parece razonable pensar que también podrían utilizarse los valores yi. Para ello, si integramos y0(x) = f(x; y(x)) en el intervalo [xi; xi+1], se tiene: Z xi+1 xi y0(x) dx = Z xi+1 xi f(x; y(x)).
6.3 Sistemas de ecuaciones diferenciales ordinarias
Un sistema de ecuaciones diferenciales es un conjunto de varias ecuaciones diferenciales con varias funciones incógnitas y un conjunto de condiciones de contorno. Una solución del mismo es un conjunto de funciones diferenciables que satisfacen todas y cada una de las ecuaciones del sistema. Según el tipo de ecuaciones diferenciales puede tenerse un sistema de ecuaciones diferenciales ordinarias o un sistema de ecuaciones en derivadas parciales. En un sistema de ecuaciones diferenciales ordinarias de cualquier orden, puede ser reducido a un sistema equivalente de primer orden, si se introducen nuevas variables y ecuaciones. Por esa razón en este artículo sólo se consideran sistemas de ecuaciones de primer orden.
APLICASIONES:
